Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Linear algebra (extension)
Simple left modules and the ` ZZ `-module
lmodn0
Next ⟩
zlmodzxzequa
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmodn0
Description:
Left modules exist.
(Contributed by
AV
, 29-Apr-2019)
Ref
Expression
Assertion
lmodn0
⊢
LMod
≠
∅
Proof
Step
Hyp
Ref
Expression
1
vex
⊢
i
∈
V
2
vex
⊢
z
∈
V
3
1
2
pm3.2i
⊢
i
∈
V
∧
z
∈
V
4
eqid
⊢
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
=
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
5
eqid
⊢
Base
ndx
i
+
ndx
i
i
i
Scalar
⁡
ndx
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
∪
⋅
ndx
z
i
i
=
Base
ndx
i
+
ndx
i
i
i
Scalar
⁡
ndx
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
∪
⋅
ndx
z
i
i
6
4
5
lmod1zr
⊢
i
∈
V
∧
z
∈
V
→
Base
ndx
i
+
ndx
i
i
i
Scalar
⁡
ndx
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
∪
⋅
ndx
z
i
i
∈
LMod
7
ne0i
⊢
Base
ndx
i
+
ndx
i
i
i
Scalar
⁡
ndx
Base
ndx
z
+
ndx
z
z
z
⋅
ndx
z
z
z
∪
⋅
ndx
z
i
i
∈
LMod
→
LMod
≠
∅
8
3
6
7
mp2b
⊢
LMod
≠
∅