Metamath Proof Explorer


Theorem lmodn0

Description: Left modules exist. (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion lmodn0 LMod

Proof

Step Hyp Ref Expression
1 vex i V
2 vex z V
3 1 2 pm3.2i i V z V
4 eqid Base ndx z + ndx z z z ndx z z z = Base ndx z + ndx z z z ndx z z z
5 eqid Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i = Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i
6 4 5 lmod1zr i V z V Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod
7 ne0i Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod LMod
8 3 6 7 mp2b LMod