Metamath Proof Explorer


Theorem lmodn0

Description: Left modules exist. (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion lmodn0 LMod

Proof

Step Hyp Ref Expression
1 vex iV
2 vex zV
3 1 2 pm3.2i iVzV
4 eqid Basendxz+ndxzzzndxzzz=Basendxz+ndxzzzndxzzz
5 eqid Basendxi+ndxiiiScalarndxBasendxz+ndxzzzndxzzzndxzii=Basendxi+ndxiiiScalarndxBasendxz+ndxzzzndxzzzndxzii
6 4 5 lmod1zr iVzVBasendxi+ndxiiiScalarndxBasendxz+ndxzzzndxzzzndxziiLMod
7 ne0i Basendxi+ndxiiiScalarndxBasendxz+ndxzzzndxzzzndxziiLModLMod
8 3 6 7 mp2b LMod