Database BASIC REAL AND COMPLEX FUNCTIONS Basic trigonometry The natural logarithm on complex numbers logimcld  
				
		 
		
			
		 
		Description:   The imaginary part of the logarithm is in ( -upi (,]  pi )  .
       Deduction form of logimcl  .  Compare logimclad  .  (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						logimcld.1    ⊢   φ   →   X  ∈   ℂ          
					 
					
						logimcld.2    ⊢   φ   →   X  ≠   0          
					 
				
					Assertion 
					logimcld    ⊢   φ   →    −  π  <   ℑ  ⁡   log  ⁡  X       ∧    ℑ  ⁡   log  ⁡  X     ≤  π          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							logimcld.1   ⊢   φ   →   X  ∈   ℂ          
						
							2 
								
							 
							logimcld.2   ⊢   φ   →   X  ≠   0          
						
							3 
								
							 
							logimcl   ⊢    X  ∈   ℂ     ∧   X  ≠   0      →    −  π  <   ℑ  ⁡   log  ⁡  X       ∧    ℑ  ⁡   log  ⁡  X     ≤  π          
						
							4 
								1  2  3 
							 
							syl2anc   ⊢   φ   →    −  π  <   ℑ  ⁡   log  ⁡  X       ∧    ℑ  ⁡   log  ⁡  X     ≤  π