Metamath Proof Explorer


Theorem lplnri1

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses lplnri1.j ˙=joinK
lplnri1.a A=AtomsK
lplnri1.p P=LPlanesK
lplnri1.y Y=Q˙R˙S
Assertion lplnri1 KHLQARASAYPQR

Proof

Step Hyp Ref Expression
1 lplnri1.j ˙=joinK
2 lplnri1.a A=AtomsK
3 lplnri1.p P=LPlanesK
4 lplnri1.y Y=Q˙R˙S
5 eqid K=K
6 5 1 2 3 4 islpln2ah KHLQARASAYPQR¬SKQ˙R
7 6 biimp3a KHLQARASAYPQR¬SKQ˙R
8 7 simpld KHLQARASAYPQR