Metamath Proof Explorer


Theorem lplnri2N

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnri1.j ˙=joinK
lplnri1.a A=AtomsK
lplnri1.p P=LPlanesK
lplnri1.y Y=Q˙R˙S
Assertion lplnri2N KHLQARASAYPQS

Proof

Step Hyp Ref Expression
1 lplnri1.j ˙=joinK
2 lplnri1.a A=AtomsK
3 lplnri1.p P=LPlanesK
4 lplnri1.y Y=Q˙R˙S
5 eqid K=K
6 5 1 2 3 4 lplnriaN KHLQARASAYP¬QKR˙S
7 5 1 2 atnlej2 KHLQARASA¬QKR˙SQS
8 6 7 syld3an3 KHLQARASAYPQS