Metamath Proof Explorer


Theorem lplnriaN

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses islpln2a.l ˙ = K
islpln2a.j ˙ = join K
islpln2a.a A = Atoms K
islpln2a.p P = LPlanes K
islpln2a.y Y = Q ˙ R ˙ S
Assertion lplnriaN K HL Q A R A S A Y P ¬ Q ˙ R ˙ S

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙ = K
2 islpln2a.j ˙ = join K
3 islpln2a.a A = Atoms K
4 islpln2a.p P = LPlanes K
5 islpln2a.y Y = Q ˙ R ˙ S
6 1 2 3 4 5 islpln2ah K HL Q A R A S A Y P Q R ¬ S ˙ Q ˙ R
7 1 2 3 hlatcon3 K HL Q A R A S A Q R ¬ S ˙ Q ˙ R ¬ Q ˙ R ˙ S
8 7 3expia K HL Q A R A S A Q R ¬ S ˙ Q ˙ R ¬ Q ˙ R ˙ S
9 6 8 sylbid K HL Q A R A S A Y P ¬ Q ˙ R ˙ S
10 9 3impia K HL Q A R A S A Y P ¬ Q ˙ R ˙ S