| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islpln2a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
islpln2a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
islpln2a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
islpln2a.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
| 5 |
|
islpln2a.y |
⊢ 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) |
| 6 |
1 2 3 4 5
|
islpln2ah |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑌 ∈ 𝑃 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 7 |
1 2 3
|
hlatcon3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑄 ≤ ( 𝑅 ∨ 𝑆 ) ) |
| 8 |
7
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) → ¬ 𝑄 ≤ ( 𝑅 ∨ 𝑆 ) ) ) |
| 9 |
6 8
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑌 ∈ 𝑃 → ¬ 𝑄 ≤ ( 𝑅 ∨ 𝑆 ) ) ) |
| 10 |
9
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → ¬ 𝑄 ≤ ( 𝑅 ∨ 𝑆 ) ) |