Metamath Proof Explorer


Theorem lplnric

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙=K
islpln2a.j ˙=joinK
islpln2a.a A=AtomsK
islpln2a.p P=LPlanesK
islpln2a.y Y=Q˙R˙S
Assertion lplnric KHLQARASAYP¬S˙Q˙R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙=K
2 islpln2a.j ˙=joinK
3 islpln2a.a A=AtomsK
4 islpln2a.p P=LPlanesK
5 islpln2a.y Y=Q˙R˙S
6 1 2 3 4 5 islpln2ah KHLQARASAYPQR¬S˙Q˙R
7 6 biimp3a KHLQARASAYPQR¬S˙Q˙R
8 7 simprd KHLQARASAYP¬S˙Q˙R