Metamath Proof Explorer


Theorem lt2addmuld

Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt2addmuld.a φA
lt2addmuld.b φB
lt2addmuld.c φC
lt2addmuld.altc φA<C
lt2addmuld.bltc φB<C
Assertion lt2addmuld φA+B<2C

Proof

Step Hyp Ref Expression
1 lt2addmuld.a φA
2 lt2addmuld.b φB
3 lt2addmuld.c φC
4 lt2addmuld.altc φA<C
5 lt2addmuld.bltc φB<C
6 1 2 3 3 4 5 lt2addd φA+B<C+C
7 3 recnd φC
8 7 2timesd φ2C=C+C
9 6 8 breqtrrd φA+B<2C