Database REAL AND COMPLEX NUMBERS Integer sets Simple number properties lt2addmuld  
				
		 
		
			
		 
		Description:   If two real numbers are less than a third real number, the sum of the
       two real numbers is less than twice the third real number.  (Contributed by Glauco Siliprandi , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lt2addmuld.a    ⊢   φ   →   A  ∈   ℝ          
					 
					
						lt2addmuld.b    ⊢   φ   →   B  ∈   ℝ          
					 
					
						lt2addmuld.c    ⊢   φ   →   C  ∈   ℝ          
					 
					
						lt2addmuld.altc    ⊢   φ   →   A  <  C         
					 
					
						lt2addmuld.bltc    ⊢   φ   →   B  <  C         
					 
				
					Assertion 
					lt2addmuld    ⊢   φ   →   A  +  B <    2   ⁢  C           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lt2addmuld.a   ⊢   φ   →   A  ∈   ℝ          
						
							2 
								
							 
							lt2addmuld.b   ⊢   φ   →   B  ∈   ℝ          
						
							3 
								
							 
							lt2addmuld.c   ⊢   φ   →   C  ∈   ℝ          
						
							4 
								
							 
							lt2addmuld.altc   ⊢   φ   →   A  <  C         
						
							5 
								
							 
							lt2addmuld.bltc   ⊢   φ   →   B  <  C         
						
							6 
								1  2  3  3  4  5 
							 
							lt2addd   ⊢   φ   →   A  +  B <  C  +  C        
						
							7 
								3 
							 
							recnd   ⊢   φ   →   C  ∈   ℂ          
						
							8 
								7 
							 
							2timesd   ⊢   φ   →     2   ⁢  C    =  C  +  C        
						
							9 
								6  8 
							 
							breqtrrd   ⊢   φ   →   A  +  B <    2   ⁢  C