Metamath Proof Explorer


Theorem lt2mul2divd

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses lt2mul2divd.1 φA
lt2mul2divd.2 φB+
lt2mul2divd.3 φC
lt2mul2divd.4 φD+
Assertion lt2mul2divd φAB<CDAD<CB

Proof

Step Hyp Ref Expression
1 lt2mul2divd.1 φA
2 lt2mul2divd.2 φB+
3 lt2mul2divd.3 φC
4 lt2mul2divd.4 φD+
5 2 rpregt0d φB0<B
6 4 rpregt0d φD0<D
7 lt2mul2div AB0<BCD0<DAB<CDAD<CB
8 1 5 3 6 7 syl22anc φAB<CDAD<CB