Metamath Proof Explorer


Theorem ltcvrntr

Description: Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses ltltncvr.b B=BaseK
ltltncvr.s <˙=<K
ltltncvr.c C=K
Assertion ltcvrntr KAXBYBZBX<˙YYCZ¬XCZ

Proof

Step Hyp Ref Expression
1 ltltncvr.b B=BaseK
2 ltltncvr.s <˙=<K
3 ltltncvr.c C=K
4 1 2 3 cvrlt KAYBZBYCZY<˙Z
5 4 ex KAYBZBYCZY<˙Z
6 5 3adant3r1 KAXBYBZBYCZY<˙Z
7 1 2 3 ltltncvr KAXBYBZBX<˙YY<˙Z¬XCZ
8 6 7 sylan2d KAXBYBZBX<˙YYCZ¬XCZ