Metamath Proof Explorer


Theorem ltdiv2dd

Description: Division of a positive number by both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltdiv2dd.a φA+
ltdiv2dd.b φB+
ltdiv2dd.c φC+
ltdiv2dd.altb φA<B
Assertion ltdiv2dd φCB<CA

Proof

Step Hyp Ref Expression
1 ltdiv2dd.a φA+
2 ltdiv2dd.b φB+
3 ltdiv2dd.c φC+
4 ltdiv2dd.altb φA<B
5 1 2 3 ltdiv2d φA<BCB<CA
6 4 5 mpbid φCB<CA