Metamath Proof Explorer
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
|
|
|
lt.2 |
|
|
|
ltlei.1 |
|
|
Assertion |
ltleii |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lt.1 |
|
2 |
|
lt.2 |
|
3 |
|
ltlei.1 |
|
4 |
1 2
|
ltlei |
|
5 |
3 4
|
ax-mp |
|