Metamath Proof Explorer
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
|
|
|
lt.2 |
|
|
|
ltlei.1 |
|
|
Assertion |
ltleii |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt.1 |
|
| 2 |
|
lt.2 |
|
| 3 |
|
ltlei.1 |
|
| 4 |
1 2
|
ltlei |
|
| 5 |
3 4
|
ax-mp |
|