Metamath Proof Explorer


Theorem ltnr

Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion ltnr A¬A<A

Proof

Step Hyp Ref Expression
1 ltso <Or
2 sonr <OrA¬A<A
3 1 2 mpan A¬A<A