Metamath Proof Explorer


Theorem ltnsym

Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ltnsym ABA<B¬B<A

Proof

Step Hyp Ref Expression
1 axlttri ABA<B¬A=BB<A
2 pm2.46 ¬A=BB<A¬B<A
3 1 2 biimtrdi ABA<B¬B<A