Metamath Proof Explorer


Theorem ltpnf

Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion ltpnf AA<+∞

Proof

Step Hyp Ref Expression
1 eqid +∞=+∞
2 orc A+∞=+∞A+∞=+∞A=−∞+∞
3 1 2 mpan2 AA+∞=+∞A=−∞+∞
4 3 olcd AA+∞A<+∞A=−∞+∞=+∞A+∞=+∞A=−∞+∞
5 rexr AA*
6 pnfxr +∞*
7 ltxr A*+∞*A<+∞A+∞A<+∞A=−∞+∞=+∞A+∞=+∞A=−∞+∞
8 5 6 7 sylancl AA<+∞A+∞A<+∞A=−∞+∞=+∞A+∞=+∞A=−∞+∞
9 4 8 mpbird AA<+∞