Metamath Proof Explorer


Theorem ltrnatlw

Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses ltrn2eq.l ˙=K
ltrn2eq.a A=AtomsK
ltrn2eq.h H=LHypK
ltrn2eq.t T=LTrnKW
Assertion ltrnatlw KHLWHFTPA¬P˙WQAFPPFQ=QQ˙W

Proof

Step Hyp Ref Expression
1 ltrn2eq.l ˙=K
2 ltrn2eq.a A=AtomsK
3 ltrn2eq.h H=LHypK
4 ltrn2eq.t T=LTrnKW
5 simp3r KHLWHFTPA¬P˙WQAFPPFQ=QFQ=Q
6 simpl1 KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WKHLWH
7 simpl21 KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WFT
8 simpl22 KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WPA¬P˙W
9 simpl23 KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WQA
10 simpr KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙W¬Q˙W
11 9 10 jca KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WQA¬Q˙W
12 simpl3l KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WFPP
13 1 2 3 4 ltrnatneq KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ
14 6 7 8 11 12 13 syl131anc KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WFQQ
15 14 ex KHLWHFTPA¬P˙WQAFPPFQ=Q¬Q˙WFQQ
16 15 necon4bd KHLWHFTPA¬P˙WQAFPPFQ=QFQ=QQ˙W
17 5 16 mpd KHLWHFTPA¬P˙WQAFPPFQ=QQ˙W