Metamath Proof Explorer


Theorem ltrnatneq

Description: If any atom (under W ) is not equal to its translation, so is any other atom. TODO: -. P .<_ W isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses ltrn2eq.l ˙=K
ltrn2eq.a A=AtomsK
ltrn2eq.h H=LHypK
ltrn2eq.t T=LTrnKW
Assertion ltrnatneq KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ

Proof

Step Hyp Ref Expression
1 ltrn2eq.l ˙=K
2 ltrn2eq.a A=AtomsK
3 ltrn2eq.h H=LHypK
4 ltrn2eq.t T=LTrnKW
5 1 2 3 4 ltrn2ateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q
6 5 necon3bid KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ
7 6 biimp3a KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ