Metamath Proof Explorer


Theorem ltrn2ateq

Description: Property of the equality of a lattice translation with its value. (Contributed by NM, 27-May-2012)

Ref Expression
Hypotheses ltrn2eq.l ˙=K
ltrn2eq.a A=AtomsK
ltrn2eq.h H=LHypK
ltrn2eq.t T=LTrnKW
Assertion ltrn2ateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q

Proof

Step Hyp Ref Expression
1 ltrn2eq.l ˙=K
2 ltrn2eq.a A=AtomsK
3 ltrn2eq.h H=LHypK
4 ltrn2eq.t T=LTrnKW
5 eqid BaseK=BaseK
6 5 1 2 3 4 ltrnideq KHLWHFTPA¬P˙WF=IBaseKFP=P
7 6 3adant3r3 KHLWHFTPA¬P˙WQA¬Q˙WF=IBaseKFP=P
8 5 1 2 3 4 ltrnideq KHLWHFTQA¬Q˙WF=IBaseKFQ=Q
9 8 3adant3r2 KHLWHFTPA¬P˙WQA¬Q˙WF=IBaseKFQ=Q
10 7 9 bitr3d KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q