Metamath Proof Explorer


Theorem lttrd

Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
letrd.3 φC
lttrd.4 φA<B
lttrd.5 φB<C
Assertion lttrd φA<C

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 letrd.3 φC
4 lttrd.4 φA<B
5 lttrd.5 φB<C
6 lttr ABCA<BB<CA<C
7 1 2 3 6 syl3anc φA<BB<CA<C
8 4 5 7 mp2and φA<C