Metamath Proof Explorer


Theorem lubdm

Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses lubfval.b B=BaseK
lubfval.l ˙=K
lubfval.u U=lubK
lubfval.p ψysy˙xzBysy˙zx˙z
lubfval.k φKV
Assertion lubdm φdomU=s𝒫B|∃!xBψ

Proof

Step Hyp Ref Expression
1 lubfval.b B=BaseK
2 lubfval.l ˙=K
3 lubfval.u U=lubK
4 lubfval.p ψysy˙xzBysy˙zx˙z
5 lubfval.k φKV
6 1 2 3 4 5 lubfval φU=s𝒫BιxB|ψs|∃!xBψ
7 6 dmeqd φdomU=doms𝒫BιxB|ψs|∃!xBψ
8 riotaex ιxB|ψV
9 eqid s𝒫BιxB|ψ=s𝒫BιxB|ψ
10 8 9 dmmpti doms𝒫BιxB|ψ=𝒫B
11 10 ineq2i s|∃!xBψdoms𝒫BιxB|ψ=s|∃!xBψ𝒫B
12 dmres doms𝒫BιxB|ψs|∃!xBψ=s|∃!xBψdoms𝒫BιxB|ψ
13 dfrab2 s𝒫B|∃!xBψ=s|∃!xBψ𝒫B
14 11 12 13 3eqtr4i doms𝒫BιxB|ψs|∃!xBψ=s𝒫B|∃!xBψ
15 7 14 eqtrdi φdomU=s𝒫B|∃!xBψ