Metamath Proof Explorer


Theorem luble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubprop.b B=BaseK
lubprop.l ˙=K
lubprop.u U=lubK
lubprop.k φKV
lubprop.s φSdomU
luble.x φXS
Assertion luble φX˙US

Proof

Step Hyp Ref Expression
1 lubprop.b B=BaseK
2 lubprop.l ˙=K
3 lubprop.u U=lubK
4 lubprop.k φKV
5 lubprop.s φSdomU
6 luble.x φXS
7 breq1 y=Xy˙USX˙US
8 1 2 3 4 5 lubprop φySy˙USzBySy˙zUS˙z
9 8 simpld φySy˙US
10 7 9 6 rspcdva φX˙US