Metamath Proof Explorer


Theorem mapdh8j

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8h.f φ F D
mapdh8h.mn φ M N X = J F
mapdh8i.x φ X V 0 ˙
mapdh8i.y φ Y V 0 ˙
mapdh8i.z φ Z V 0 ˙
mapdh8i.xy φ N X N Y
mapdh8i.xz φ N X N Z
mapdh8i.yt φ N Y N T
mapdh8i.zt φ N Z N T
mapdh8j.t φ T V 0 ˙
Assertion mapdh8j φ I Y I X F Y T = I Z I X F Z T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8h.f φ F D
16 mapdh8h.mn φ M N X = J F
17 mapdh8i.x φ X V 0 ˙
18 mapdh8i.y φ Y V 0 ˙
19 mapdh8i.z φ Z V 0 ˙
20 mapdh8i.xy φ N X N Y
21 mapdh8i.xz φ N X N Z
22 mapdh8i.yt φ N Y N T
23 mapdh8i.zt φ N Z N T
24 mapdh8j.t φ T V 0 ˙
25 14 adantr φ N X = N T K HL W H
26 15 adantr φ N X = N T F D
27 16 adantr φ N X = N T M N X = J F
28 eqidd φ N X = N T I X F Y = I X F Y
29 eqidd φ N X = N T I X F Z = I X F Z
30 17 adantr φ N X = N T X V 0 ˙
31 18 adantr φ N X = N T Y V 0 ˙
32 19 adantr φ N X = N T Z V 0 ˙
33 24 adantr φ N X = N T T V 0 ˙
34 simpr φ N X = N T N X = N T
35 20 adantr φ N X = N T N X N Y
36 21 adantr φ N X = N T N X N Z
37 1 2 3 4 5 6 7 8 9 10 11 12 13 25 26 27 28 29 30 31 32 33 34 35 36 mapdh8ad φ N X = N T I Y I X F Y T = I Z I X F Z T
38 14 adantr φ N X N T K HL W H
39 15 adantr φ N X N T F D
40 16 adantr φ N X N T M N X = J F
41 17 adantr φ N X N T X V 0 ˙
42 18 adantr φ N X N T Y V 0 ˙
43 19 adantr φ N X N T Z V 0 ˙
44 20 adantr φ N X N T N X N Y
45 21 adantr φ N X N T N X N Z
46 22 adantr φ N X N T N Y N T
47 23 adantr φ N X N T N Z N T
48 24 adantr φ N X N T T V 0 ˙
49 simpr φ N X N T N X N T
50 1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 48 49 mapdh8i φ N X N T I Y I X F Y T = I Z I X F Z T
51 37 50 pm2.61dane φ I Y I X F Y T = I Z I X F Z T