Metamath Proof Explorer


Theorem mapfvd

Description: The value of a function that maps from B to A . (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses mapfvd.m M=AB
mapfvd.f φFM
mapfvd.x φXB
Assertion mapfvd φFXA

Proof

Step Hyp Ref Expression
1 mapfvd.m M=AB
2 mapfvd.f φFM
3 mapfvd.x φXB
4 elmapi FABF:BA
5 ffvelcdm F:BAXBFXA
6 5 expcom XBF:BAFXA
7 3 4 6 syl2imc FABφFXA
8 7 1 eleq2s FMφFXA
9 2 8 mpcom φFXA