Metamath Proof Explorer


Theorem mapfzcons1cl

Description: A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M=N+1
Assertion mapfzcons1cl AB1MA1NB1N

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M=N+1
2 fzssp1 1N1N+1
3 1 oveq2i 1M=1N+1
4 2 3 sseqtrri 1N1M
5 elmapssres AB1M1N1MA1NB1N
6 4 5 mpan2 AB1MA1NB1N