Metamath Proof Explorer


Theorem mapfzcons1cl

Description: A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1
|- M = ( N + 1 )
Assertion mapfzcons1cl
|- ( A e. ( B ^m ( 1 ... M ) ) -> ( A |` ( 1 ... N ) ) e. ( B ^m ( 1 ... N ) ) )

Proof

Step Hyp Ref Expression
1 mapfzcons.1
 |-  M = ( N + 1 )
2 fzssp1
 |-  ( 1 ... N ) C_ ( 1 ... ( N + 1 ) )
3 1 oveq2i
 |-  ( 1 ... M ) = ( 1 ... ( N + 1 ) )
4 2 3 sseqtrri
 |-  ( 1 ... N ) C_ ( 1 ... M )
5 elmapssres
 |-  ( ( A e. ( B ^m ( 1 ... M ) ) /\ ( 1 ... N ) C_ ( 1 ... M ) ) -> ( A |` ( 1 ... N ) ) e. ( B ^m ( 1 ... N ) ) )
6 4 5 mpan2
 |-  ( A e. ( B ^m ( 1 ... M ) ) -> ( A |` ( 1 ... N ) ) e. ( B ^m ( 1 ... N ) ) )