Metamath Proof Explorer


Theorem mapfzcons1cl

Description: A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 𝑀 = ( 𝑁 + 1 )
Assertion mapfzcons1cl ( 𝐴 ∈ ( 𝐵m ( 1 ... 𝑀 ) ) → ( 𝐴 ↾ ( 1 ... 𝑁 ) ) ∈ ( 𝐵m ( 1 ... 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 mapfzcons.1 𝑀 = ( 𝑁 + 1 )
2 fzssp1 ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) )
3 1 oveq2i ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) )
4 2 3 sseqtrri ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 )
5 elmapssres ( ( 𝐴 ∈ ( 𝐵m ( 1 ... 𝑀 ) ) ∧ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ) → ( 𝐴 ↾ ( 1 ... 𝑁 ) ) ∈ ( 𝐵m ( 1 ... 𝑁 ) ) )
6 4 5 mpan2 ( 𝐴 ∈ ( 𝐵m ( 1 ... 𝑀 ) ) → ( 𝐴 ↾ ( 1 ... 𝑁 ) ) ∈ ( 𝐵m ( 1 ... 𝑁 ) ) )