Metamath Proof Explorer


Theorem mat1f

Description: There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K=BaseR
mat1rhmval.a A=EMatR
mat1rhmval.b B=BaseA
mat1rhmval.o O=EE
mat1rhmval.f F=xKOx
Assertion mat1f RRingEVF:KB

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K=BaseR
2 mat1rhmval.a A=EMatR
3 mat1rhmval.b B=BaseA
4 mat1rhmval.o O=EE
5 mat1rhmval.f F=xKOx
6 1 2 3 4 5 mat1f1o RRingEVF:K1-1 ontoB
7 f1of F:K1-1 ontoBF:KB
8 6 7 syl RRingEVF:KB