Metamath Proof Explorer


Theorem matplusg

Description: The matrix ring has the same addition as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matbas.a A=NMatR
matbas.g G=RfreeLModN×N
Assertion matplusg NFinRV+G=+A

Proof

Step Hyp Ref Expression
1 matbas.a A=NMatR
2 matbas.g G=RfreeLModN×N
3 plusgid +𝑔=Slot+ndx
4 plusgndxnmulrndx +ndxndx
5 3 4 setsnid +G=+GsSetndxRmaMulNNN
6 eqid RmaMulNNN=RmaMulNNN
7 1 2 6 matval NFinRVA=GsSetndxRmaMulNNN
8 7 fveq2d NFinRV+A=+GsSetndxRmaMulNNN
9 5 8 eqtr4id NFinRV+G=+A