Metamath Proof Explorer


Theorem max2d

Description: A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses max2d.1 φA
max2d.2 φB
Assertion max2d φBifABBA

Proof

Step Hyp Ref Expression
1 max2d.1 φA
2 max2d.2 φB
3 max2 ABBifABBA
4 1 2 3 syl2anc φBifABBA