Metamath Proof Explorer


Theorem mdandyvr3

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr3.1 φζ
mdandyvr3.2 ψσ
mdandyvr3.3 χψ
mdandyvr3.4 θψ
mdandyvr3.5 τφ
mdandyvr3.6 ηφ
Assertion mdandyvr3 χσθστζηζ

Proof

Step Hyp Ref Expression
1 mdandyvr3.1 φζ
2 mdandyvr3.2 ψσ
3 mdandyvr3.3 χψ
4 mdandyvr3.4 θψ
5 mdandyvr3.5 τφ
6 mdandyvr3.6 ηφ
7 3 2 bitri χσ
8 4 2 bitri θσ
9 7 8 pm3.2i χσθσ
10 5 1 bitri τζ
11 9 10 pm3.2i χσθστζ
12 6 1 bitri ηζ
13 11 12 pm3.2i χσθστζηζ