Metamath Proof Explorer


Theorem mdandyvr8

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr8.1 φζ
mdandyvr8.2 ψσ
mdandyvr8.3 χφ
mdandyvr8.4 θφ
mdandyvr8.5 τφ
mdandyvr8.6 ηψ
Assertion mdandyvr8 χζθζτζησ

Proof

Step Hyp Ref Expression
1 mdandyvr8.1 φζ
2 mdandyvr8.2 ψσ
3 mdandyvr8.3 χφ
4 mdandyvr8.4 θφ
5 mdandyvr8.5 τφ
6 mdandyvr8.6 ηψ
7 2 1 3 4 5 6 mdandyvr7 χζθζτζησ