Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy mdandyvr8  
				
		 
		
			
		 
		Description:   Given the equivalences set in the hypotheses, there exist a proof where
       ch, th, ta, et match ze, si accordingly.  (Contributed by Jarvin Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mdandyvr8.1 |- ( ph <-> ze )  
					
						mdandyvr8.2 |- ( ps <-> si )  
					
						mdandyvr8.3 |- ( ch <-> ph )  
					
						mdandyvr8.4 |- ( th <-> ph )  
					
						mdandyvr8.5 |- ( ta <-> ph )  
					
						mdandyvr8.6 |- ( et <-> ps )  
				
					Assertion 
					mdandyvr8 |- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mdandyvr8.1  |-  ( ph <-> ze )  
						
							2 
								
							 
							mdandyvr8.2  |-  ( ps <-> si )  
						
							3 
								
							 
							mdandyvr8.3  |-  ( ch <-> ph )  
						
							4 
								
							 
							mdandyvr8.4  |-  ( th <-> ph )  
						
							5 
								
							 
							mdandyvr8.5  |-  ( ta <-> ph )  
						
							6 
								
							 
							mdandyvr8.6  |-  ( et <-> ps )  
						
							7 
								2  1  3  4  5  6 
							 
							mdandyvr7  |-  ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )