Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy mdandyvr7  
				
		 
		
			
		 
		Description:   Given the equivalences set in the hypotheses, there exist a proof where
       ch, th, ta, et match ze, si accordingly.  (Contributed by Jarvin Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mdandyvr7.1 |- ( ph <-> ze )  
					
						mdandyvr7.2 |- ( ps <-> si )  
					
						mdandyvr7.3 |- ( ch <-> ps )  
					
						mdandyvr7.4 |- ( th <-> ps )  
					
						mdandyvr7.5 |- ( ta <-> ps )  
					
						mdandyvr7.6 |- ( et <-> ph )  
				
					Assertion 
					mdandyvr7 |- ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mdandyvr7.1  |-  ( ph <-> ze )  
						
							2 
								
							 
							mdandyvr7.2  |-  ( ps <-> si )  
						
							3 
								
							 
							mdandyvr7.3  |-  ( ch <-> ps )  
						
							4 
								
							 
							mdandyvr7.4  |-  ( th <-> ps )  
						
							5 
								
							 
							mdandyvr7.5  |-  ( ta <-> ps )  
						
							6 
								
							 
							mdandyvr7.6  |-  ( et <-> ph )  
						
							7 
								3  2 
							 
							bitri  |-  ( ch <-> si )  
						
							8 
								4  2 
							 
							bitri  |-  ( th <-> si )  
						
							9 
								7  8 
							 
							pm3.2i  |-  ( ( ch <-> si ) /\ ( th <-> si ) )  
						
							10 
								5  2 
							 
							bitri  |-  ( ta <-> si )  
						
							11 
								9  10 
							 
							pm3.2i  |-  ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) )  
						
							12 
								6  1 
							 
							bitri  |-  ( et <-> ze )  
						
							13 
								11  12 
							 
							pm3.2i  |-  ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )