Metamath Proof Explorer


Theorem mdandyvrx0

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx0.1 φζ
mdandyvrx0.2 ψσ
mdandyvrx0.3 χφ
mdandyvrx0.4 θφ
mdandyvrx0.5 τφ
mdandyvrx0.6 ηφ
Assertion mdandyvrx0 χζθζτζηζ

Proof

Step Hyp Ref Expression
1 mdandyvrx0.1 φζ
2 mdandyvrx0.2 ψσ
3 mdandyvrx0.3 χφ
4 mdandyvrx0.4 θφ
5 mdandyvrx0.5 τφ
6 mdandyvrx0.6 ηφ
7 1 3 axorbciffatcxorb χζ
8 1 4 axorbciffatcxorb θζ
9 7 8 pm3.2i χζθζ
10 1 5 axorbciffatcxorb τζ
11 9 10 pm3.2i χζθζτζ
12 1 6 axorbciffatcxorb ηζ
13 11 12 pm3.2i χζθζτζηζ