Metamath Proof Explorer


Theorem mdandyvrx1

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx1.1 φζ
mdandyvrx1.2 ψσ
mdandyvrx1.3 χψ
mdandyvrx1.4 θφ
mdandyvrx1.5 τφ
mdandyvrx1.6 ηφ
Assertion mdandyvrx1 χσθζτζηζ

Proof

Step Hyp Ref Expression
1 mdandyvrx1.1 φζ
2 mdandyvrx1.2 ψσ
3 mdandyvrx1.3 χψ
4 mdandyvrx1.4 θφ
5 mdandyvrx1.5 τφ
6 mdandyvrx1.6 ηφ
7 2 3 axorbciffatcxorb χσ
8 1 4 axorbciffatcxorb θζ
9 7 8 pm3.2i χσθζ
10 1 5 axorbciffatcxorb τζ
11 9 10 pm3.2i χσθζτζ
12 1 6 axorbciffatcxorb ηζ
13 11 12 pm3.2i χσθζτζηζ