Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy mdandyvrx1  
				
		 
		
			
		 
		Description:   Given the exclusivities set in the hypotheses, there exist a proof where
       ch, th, ta, et exclude ze, si accordingly.  (Contributed by Jarvin
       Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mdandyvrx1.1 |- ( ph \/_ ze )  
					
						mdandyvrx1.2 |- ( ps \/_ si )  
					
						mdandyvrx1.3 |- ( ch <-> ps )  
					
						mdandyvrx1.4 |- ( th <-> ph )  
					
						mdandyvrx1.5 |- ( ta <-> ph )  
					
						mdandyvrx1.6 |- ( et <-> ph )  
				
					Assertion 
					mdandyvrx1 |- ( ( ( ( ch \/_ si ) /\ ( th \/_ ze ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ ze ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mdandyvrx1.1  |-  ( ph \/_ ze )  
						
							2 
								
							 
							mdandyvrx1.2  |-  ( ps \/_ si )  
						
							3 
								
							 
							mdandyvrx1.3  |-  ( ch <-> ps )  
						
							4 
								
							 
							mdandyvrx1.4  |-  ( th <-> ph )  
						
							5 
								
							 
							mdandyvrx1.5  |-  ( ta <-> ph )  
						
							6 
								
							 
							mdandyvrx1.6  |-  ( et <-> ph )  
						
							7 
								2  3 
							 
							axorbciffatcxorb  |-  ( ch \/_ si )  
						
							8 
								1  4 
							 
							axorbciffatcxorb  |-  ( th \/_ ze )  
						
							9 
								7  8 
							 
							pm3.2i  |-  ( ( ch \/_ si ) /\ ( th \/_ ze ) )  
						
							10 
								1  5 
							 
							axorbciffatcxorb  |-  ( ta \/_ ze )  
						
							11 
								9  10 
							 
							pm3.2i  |-  ( ( ( ch \/_ si ) /\ ( th \/_ ze ) ) /\ ( ta \/_ ze ) )  
						
							12 
								1  6 
							 
							axorbciffatcxorb  |-  ( et \/_ ze )  
						
							13 
								11  12 
							 
							pm3.2i  |-  ( ( ( ( ch \/_ si ) /\ ( th \/_ ze ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ ze ) )