Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdandyvrx7.1 | |
|
mdandyvrx7.2 | |
||
mdandyvrx7.3 | |
||
mdandyvrx7.4 | |
||
mdandyvrx7.5 | |
||
mdandyvrx7.6 | |
||
Assertion | mdandyvrx7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdandyvrx7.1 | |
|
2 | mdandyvrx7.2 | |
|
3 | mdandyvrx7.3 | |
|
4 | mdandyvrx7.4 | |
|
5 | mdandyvrx7.5 | |
|
6 | mdandyvrx7.6 | |
|
7 | 2 3 | axorbciffatcxorb | |
8 | 2 4 | axorbciffatcxorb | |
9 | 7 8 | pm3.2i | |
10 | 2 5 | axorbciffatcxorb | |
11 | 9 10 | pm3.2i | |
12 | 1 6 | axorbciffatcxorb | |
13 | 11 12 | pm3.2i | |