Metamath Proof Explorer


Theorem mdandyvrx7

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx7.1 φζ
mdandyvrx7.2 ψσ
mdandyvrx7.3 χψ
mdandyvrx7.4 θψ
mdandyvrx7.5 τψ
mdandyvrx7.6 ηφ
Assertion mdandyvrx7 χσθστσηζ

Proof

Step Hyp Ref Expression
1 mdandyvrx7.1 φζ
2 mdandyvrx7.2 ψσ
3 mdandyvrx7.3 χψ
4 mdandyvrx7.4 θψ
5 mdandyvrx7.5 τψ
6 mdandyvrx7.6 ηφ
7 2 3 axorbciffatcxorb χσ
8 2 4 axorbciffatcxorb θσ
9 7 8 pm3.2i χσθσ
10 2 5 axorbciffatcxorb τσ
11 9 10 pm3.2i χσθστσ
12 1 6 axorbciffatcxorb ηζ
13 11 12 pm3.2i χσθστσηζ