Metamath Proof Explorer


Theorem mdandyvrx8

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx8.1 φζ
mdandyvrx8.2 ψσ
mdandyvrx8.3 χφ
mdandyvrx8.4 θφ
mdandyvrx8.5 τφ
mdandyvrx8.6 ηψ
Assertion mdandyvrx8 χζθζτζησ

Proof

Step Hyp Ref Expression
1 mdandyvrx8.1 φζ
2 mdandyvrx8.2 ψσ
3 mdandyvrx8.3 χφ
4 mdandyvrx8.4 θφ
5 mdandyvrx8.5 τφ
6 mdandyvrx8.6 ηψ
7 2 1 3 4 5 6 mdandyvrx7 χζθζτζησ