Metamath Proof Explorer


Theorem mdet0f1o

Description: The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0f1o RRingmaDetR:1-1 onto1R

Proof

Step Hyp Ref Expression
1 mdet0pr RRingmaDetR=1R
2 0ex V
3 fvex 1RV
4 2 3 f1osn 1R:1-1 onto1R
5 f1oeq1 maDetR=1RmaDetR:1-1 onto1R1R:1-1 onto1R
6 4 5 mpbiri maDetR=1RmaDetR:1-1 onto1R
7 1 6 syl RRingmaDetR:1-1 onto1R