Metamath Proof Explorer


Theorem mdiv

Description: A division law. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φA
ldiv.b φB
ldiv.c φC
mdiv.an0 φA0
mdiv.bn0 φB0
Assertion mdiv φA=CBB=CA

Proof

Step Hyp Ref Expression
1 ldiv.a φA
2 ldiv.b φB
3 ldiv.c φC
4 mdiv.an0 φA0
5 mdiv.bn0 φB0
6 1 2 3 5 ldiv φAB=CA=CB
7 1 2 3 4 rdiv φAB=CB=CA
8 6 7 bitr3d φA=CBB=CA