Metamath Proof Explorer


Theorem mdsym

Description: M-symmetry of the Hilbert lattice. Lemma 5 of Maeda p. 168. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion mdsym A C B C A 𝑀 B B 𝑀 A

Proof

Step Hyp Ref Expression
1 breq1 A = if A C A A 𝑀 B if A C A 𝑀 B
2 breq2 A = if A C A B 𝑀 A B 𝑀 if A C A
3 1 2 bibi12d A = if A C A A 𝑀 B B 𝑀 A if A C A 𝑀 B B 𝑀 if A C A
4 breq2 B = if B C B if A C A 𝑀 B if A C A 𝑀 if B C B
5 breq1 B = if B C B B 𝑀 if A C A if B C B 𝑀 if A C A
6 4 5 bibi12d B = if B C B if A C A 𝑀 B B 𝑀 if A C A if A C A 𝑀 if B C B if B C B 𝑀 if A C A
7 ifchhv if A C A C
8 ifchhv if B C B C
9 7 8 mdsymi if A C A 𝑀 if B C B if B C B 𝑀 if A C A
10 3 6 9 dedth2h A C B C A 𝑀 B B 𝑀 A