Metamath Proof Explorer


Theorem mdsym

Description: M-symmetry of the Hilbert lattice. Lemma 5 of Maeda p. 168. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion mdsym ACBCA𝑀BB𝑀A

Proof

Step Hyp Ref Expression
1 breq1 A=ifACAA𝑀BifACA𝑀B
2 breq2 A=ifACAB𝑀AB𝑀ifACA
3 1 2 bibi12d A=ifACAA𝑀BB𝑀AifACA𝑀BB𝑀ifACA
4 breq2 B=ifBCBifACA𝑀BifACA𝑀ifBCB
5 breq1 B=ifBCBB𝑀ifACAifBCB𝑀ifACA
6 4 5 bibi12d B=ifBCBifACA𝑀BB𝑀ifACAifACA𝑀ifBCBifBCB𝑀ifACA
7 ifchhv ifACAC
8 ifchhv ifBCBC
9 7 8 mdsymi ifACA𝑀ifBCBifBCB𝑀ifACA
10 3 6 9 dedth2h ACBCA𝑀BB𝑀A