Metamath Proof Explorer


Definition df-md

Description: Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of MaedaMaeda p. 1, who use the notation (x,y)M for "the ordered pair is a modular pair." See mdbr for membership relation. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion df-md 𝑀=xy|xCyCzCzyzxy=zxy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmd class𝑀
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 cch classC
5 3 4 wcel wffxC
6 2 cv setvary
7 6 4 wcel wffyC
8 5 7 wa wffxCyC
9 vz setvarz
10 9 cv setvarz
11 10 6 wss wffzy
12 chj class
13 10 3 12 co classzx
14 13 6 cin classzxy
15 3 6 cin classxy
16 10 15 12 co classzxy
17 14 16 wceq wffzxy=zxy
18 11 17 wi wffzyzxy=zxy
19 18 9 4 wral wffzCzyzxy=zxy
20 8 19 wa wffxCyCzCzyzxy=zxy
21 20 1 2 copab classxy|xCyCzCzyzxy=zxy
22 0 21 wceq wff𝑀=xy|xCyCzCzyzxy=zxy