Metamath Proof Explorer


Theorem mercolem1

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem1 φψχψθχ

Proof

Step Hyp Ref Expression
1 merco2 φφφφφφφφφ
2 merco2 χφφφψφψχψθχ
3 merco2 ψθχφψφφψ
4 merco2 ψθχφψφφψφφψψθχφφψχψθχ
5 3 4 ax-mp φφψψθχφφψχψθχ
6 merco2 φφψψθχφφψχψθχφψχψθχφφψφχφφφψ
7 5 6 ax-mp φψχψθχφφψφχφφφψ
8 merco2 φψχψθχφφψφχφφφψχφφφψφψχψθχφφφφφφφφφφφφφφφφφφφψχψθχ
9 7 8 ax-mp χφφφψφψχψθχφφφφφφφφφφφφφφφφφφφψχψθχ
10 2 9 ax-mp φφφφφφφφφφφφφφφφφφφψχψθχ
11 1 10 ax-mp φφφφφφφφφφψχψθχ
12 1 11 ax-mp φψχψθχ