Metamath Proof Explorer


Theorem merlem13

Description: Step 35 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem13 φψ謬χχ¬¬φψ

Proof

Step Hyp Ref Expression
1 merlem12 謬χχ¬θ¬¬χχ¬¬φ¬θ¬¬χχ¬¬φ
2 merlem12 謬χχ¬¬φ¬¬φ
3 merlem5 謬χχ¬¬φ¬¬φ¬¬θ¬¬χχ¬¬φ¬¬φ
4 2 3 ax-mp ¬¬θ¬¬χχ¬¬φ¬¬φ
5 merlem6 ¬¬θ¬¬χχ¬¬φ¬¬φ¬θ¬¬χχ¬¬φψ¬¬θ¬¬χχ¬¬φ¬¬φ¬θ¬¬χχ¬¬φ謬χχ¬θ¬¬χχ¬¬φ
6 4 5 ax-mp ¬θ¬¬χχ¬¬φψ¬¬θ¬¬χχ¬¬φ¬¬φ¬θ¬¬χχ¬¬φ謬χχ¬θ¬¬χχ¬¬φ
7 meredith ¬θ¬¬χχ¬¬φψ¬¬θ¬¬χχ¬¬φ¬¬φ¬θ¬¬χχ¬¬φ謬χχ¬θ¬¬χχ¬¬φ謬χχ¬θ¬¬χχ¬¬φ¬θ¬¬χχ¬¬φ¬φ¬θ¬¬χχ¬¬φ
8 6 7 ax-mp 謬χχ¬θ¬¬χχ¬¬φ¬θ¬¬χχ¬¬φ¬φ¬θ¬¬χχ¬¬φ
9 1 8 ax-mp ¬φ¬θ¬¬χχ¬¬φ
10 merlem6 ¬φ¬θ¬¬χχ¬¬φψψ¬φ¬θ¬¬χχ¬¬φφψψ¬φ¬θ¬¬χχ¬¬φφφ
11 9 10 ax-mp ψψ¬φ¬θ¬¬χχ¬¬φφψψ¬φ¬θ¬¬χχ¬¬φφφ
12 merlem11 ψψ¬φ¬θ¬¬χχ¬¬φφψψ¬φ¬θ¬¬χχ¬¬φφφψψ¬φ¬θ¬¬χχ¬¬φφφ
13 11 12 ax-mp ψψ¬φ¬θ¬¬χχ¬¬φφφ
14 meredith ψψ¬φ¬θ¬¬χχ¬¬φφφφψ謬χχ¬¬φψ
15 13 14 ax-mp φψ謬χχ¬¬φψ