Step |
Hyp |
Ref |
Expression |
1 |
|
merlem12 |
|- ( ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) |
2 |
|
merlem12 |
|- ( ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) |
3 |
|
merlem5 |
|- ( ( ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) -> ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) ) |
4 |
2 3
|
ax-mp |
|- ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) |
5 |
|
merlem6 |
|- ( ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) -> ( ( ( ( -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> ps ) -> ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) ) |
6 |
4 5
|
ax-mp |
|- ( ( ( ( -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> ps ) -> ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) |
7 |
|
meredith |
|- ( ( ( ( ( -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> ps ) -> ( -. -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ( ( ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) ) |
8 |
6 7
|
ax-mp |
|- ( ( ( ( th -> ( -. -. ch -> ch ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) |
9 |
1 8
|
ax-mp |
|- ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) |
10 |
|
merlem6 |
|- ( ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) -> ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) ) ) |
11 |
9 10
|
ax-mp |
|- ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) ) |
12 |
|
merlem11 |
|- ( ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) ) -> ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) |
14 |
|
meredith |
|- ( ( ( ( ( ps -> ps ) -> ( -. ph -> -. ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) ) ) -> ph ) -> ph ) -> ( ( ph -> ps ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> ps ) ) ) |
15 |
13 14
|
ax-mp |
|- ( ( ph -> ps ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> -. -. ph ) -> ps ) ) |