Metamath Proof Explorer


Theorem merlem9

Description: Step 18 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem9 φ ψ χ θ ψ τ η χ θ ψ τ

Proof

Step Hyp Ref Expression
1 merlem6 θ ψ τ χ θ ψ τ ¬ η ¬ ψ ¬ η
2 merlem8 θ ψ τ χ θ ψ τ ¬ η ¬ ψ ¬ η ψ τ ¬ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ ¬ φ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ χ θ ψ τ ¬ η ¬ ψ ¬ η
3 1 2 ax-mp ψ τ ¬ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ ¬ φ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ χ θ ψ τ ¬ η ¬ ψ ¬ η
4 meredith ψ τ ¬ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ ¬ φ ¬ χ θ ψ τ ¬ η ¬ ψ ¬ η ¬ θ χ θ ψ τ ¬ η ¬ ψ ¬ η χ θ ψ τ ¬ η ¬ ψ ¬ η ψ φ ψ
5 3 4 ax-mp χ θ ψ τ ¬ η ¬ ψ ¬ η ψ φ ψ
6 meredith χ θ ψ τ ¬ η ¬ ψ ¬ η ψ φ ψ φ ψ χ θ ψ τ η χ θ ψ τ
7 5 6 ax-mp φ ψ χ θ ψ τ η χ θ ψ τ