Metamath Proof Explorer


Theorem merlem9

Description: Step 18 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem9 φψχθψτηχθψτ

Proof

Step Hyp Ref Expression
1 merlem6 θψτχθψτ¬η¬ψ¬η
2 merlem8 θψτχθψτ¬η¬ψ¬ηψτ¬¬χθψτ¬η¬ψ¬η¬θ¬φ¬χθψτ¬η¬ψ¬η¬θχθψτ¬η¬ψ¬η
3 1 2 ax-mp ψτ¬¬χθψτ¬η¬ψ¬η¬θ¬φ¬χθψτ¬η¬ψ¬η¬θχθψτ¬η¬ψ¬η
4 meredith ψτ¬¬χθψτ¬η¬ψ¬η¬θ¬φ¬χθψτ¬η¬ψ¬η¬θχθψτ¬η¬ψ¬ηχθψτ¬η¬ψ¬ηψφψ
5 3 4 ax-mp χθψτ¬η¬ψ¬ηψφψ
6 meredith χθψτ¬η¬ψ¬ηψφψφψχθψτηχθψτ
7 5 6 ax-mp φψχθψτηχθψτ