Metamath Proof Explorer


Theorem mndideu

Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses mndcl.b B=BaseG
mndcl.p +˙=+G
Assertion mndideu GMnd∃!uBxBu+˙x=xx+˙u=x

Proof

Step Hyp Ref Expression
1 mndcl.b B=BaseG
2 mndcl.p +˙=+G
3 1 2 mndid GMnduBxBu+˙x=xx+˙u=x
4 mgmidmo *uBxBu+˙x=xx+˙u=x
5 reu5 ∃!uBxBu+˙x=xx+˙u=xuBxBu+˙x=xx+˙u=x*uBxBu+˙x=xx+˙u=x
6 3 4 5 sylanblrc GMnd∃!uBxBu+˙x=xx+˙u=x