Metamath Proof Explorer


Theorem mndlrid

Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses mndlrid.b B = Base G
mndlrid.p + ˙ = + G
mndlrid.o 0 ˙ = 0 G
Assertion mndlrid G Mnd X B 0 ˙ + ˙ X = X X + ˙ 0 ˙ = X

Proof

Step Hyp Ref Expression
1 mndlrid.b B = Base G
2 mndlrid.p + ˙ = + G
3 mndlrid.o 0 ˙ = 0 G
4 1 2 mndid G Mnd y B x B y + ˙ x = x x + ˙ y = x
5 1 3 2 4 mgmlrid G Mnd X B 0 ˙ + ˙ X = X X + ˙ 0 ˙ = X