Metamath Proof Explorer


Theorem mndlrid

Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses mndlrid.b B=BaseG
mndlrid.p +˙=+G
mndlrid.o 0˙=0G
Assertion mndlrid GMndXB0˙+˙X=XX+˙0˙=X

Proof

Step Hyp Ref Expression
1 mndlrid.b B=BaseG
2 mndlrid.p +˙=+G
3 mndlrid.o 0˙=0G
4 1 2 mndid GMndyBxBy+˙x=xx+˙y=x
5 1 3 2 4 mgmlrid GMndXB0˙+˙X=XX+˙0˙=X